Суда с ядерными энергетическими установками в России
Сопротивление материалов выполнение курсовой Инженерная графика выполнение сборочного чертежа История искусства Курс лекций по физике Примеры решения задач
Расчет сварных соединений

Сопротивление материалов выполнение курсовой

Зубчатые передачи. Редукторы: Причины разрушения зубчатых передач. Геометрические размеры косозубого и конического зубчатых колес. Расчеты на прочность зубчатых передач. Редукторы: назначение, классификация. Основные схемы редукторов и их особенности. Коробки передач.

Расчет статически неопределимых балок. Способ сравнения деформаций.

Общие понятия и метод расчета.

До сих пор мы рассматривали только статически определимые балки, у которых три опорные реакции определялись из условий равновесия. Очень часто, по условиям работы конструкции, оказывается необходимым увеличить число опорных закреплений; тогда мы получаем так называемую статически неопределимую балку.



Рис.1. Схемы статически неопределимых балок

Например, для уменьшения пролета балки АВ на двух опорах (Рис.1, а) можно поставить опору еще посредине, а для уменьшения деформаций балки, защемленной одним концом (Рис.1, б), можно подпереть ее свободный конец.

Для подбора сечения таких балок, так же как и в рассмотренных ранее задачах, необходимо построить обычным порядком эпюры изгибающих моментов и поперечных сил, а стало быть, определить опорные реакции. [an error occurred while processing this directive]

Во всех подобных случаях число опорных реакций, которые могут возникнуть, превышает число уравнений статики, например, для балок рис.2. Соответственно: четыре, четыре и пять опорных реакций.



Рис.2. Механизм появления дополнительных связей

Поэтому необходимо составить дополнительные уравнения, выражающие условия совместности деформаций, которые вместе с обычными уравнениями равновесия и дадут возможность определить все опорные реакции.

Определим опорные реакции и построим эпюру моментов для балки, находящейся под действием равномерно распределенной нагрузки q рис.3. Сначала изобразим все реакции, которые по устройству опор могут возникнуть в этой балке. Таких реакций может быть на опоре А три: вертикальная А, горизонтальная и опорный момент , на опоре В возможно появление лишь одной реакции В. Таким образом, число опорных реакций на одну больше, чем уравнений статики.

Одна из реакций является добавочной, как говорят, «лишней» неизвестной. Этот термин прочно укоренился в технической литературе; между тем, принять его можно лишь условно. [an error occurred while processing this directive]



Рис.3. Исходная расчетная схема статически неопределимой балки. Равнопеременное вращение: w=w0+et; , здесь начальный угол j0=0.

Скорости и ускорения точек вращающегося тела.  – скорость любой точки твердого тела, вращающегося вокруг неподвижной оси, равна векторному произведению вектора угловой скорости тела на радиус–вектор этой точки. Модуль векторного произведения: v=w×r×sin(a)= w×(CM),  (СМ) – расстояние от точки М до оси вращения. Направлен вектор скорости по касательной к окружности, по которой перемещается точка М, в сторону вращения.

Формулы Эйлера: ,

wx,wy,wz – проекции вектора угловой скорости. Проекция вращательной (окружной) скорости: vx=wyz – wzy; vy=wzx – wxz; vz=wxy – wyx. Если ось вращения совпадает с осью z, то vx= – wy; vy=wx. Ускорение: . Вращательное ускорение , модуль вращат. уск. авр=e×r×sina, направлено по касательной к траектории точки, т.е. параллельно скорости. Центростремительное (осестремительное) ускорение , ац=w2×R, направлено по радиусу к оси (центру) вращения. Модуль полного уск.: . Угол, между векторами полного и центростремит-ного ускорений: .

Действительно, добавочная реакция и соответствующее ей добавочное опорное закрепление являются «лишними» только с точки зрения необходимости этих закреплений для равновесия балки как жесткого целого.

Способ сравнения деформаций. Выполняя решение уравнения , названного уравнением совместности деформаций, можно рассуждать следующим образом.

Применение вариационных методов. Раскрытие статической неопределимости для балки, может быть произведено и при помощи теоремы Кастильяно.

Раскрытие статической неопределимости возможно выполнить также и по теореме Мора.

Выбор лишней неизвестной и основной системы.   В предыдущем примере мы выбрали за лишнюю неизвестную реакцию В.

Решение той же основной системы (Рис.4, а) с применением способа Верещагина потребует изображения второго состояния загружения основной системы моментом (Рис.4, б) и построения эпюр изгибающего момента: от заданной нагрузки q (Рис.4, в), от момента (Рис.4, г) и от единичной нагрузки; (Рис.4, д).

Определение деформаций статически неопределимых балок. После того, как определены опорные реакции, построены эпюры изгибающих моментов и поперечных сил, подобраны сечения статически неопределимой балки, определение ее деформаций ничем- не отличается от таких же вычислений для статически определимой балки.

Примеры интегрируемых задач динамики материальной точки (случаи уравнений с разделяющимися переменными, линейных уравнений с постоянными коэффициентами). Дифференциальные уравнения движения точки в полярной и цилиндрической системах координат.
Вычисление потенциальной энергии