Сопротивление материалов выполнение курсовой Инженерная графика выполнение сборочного чертежа История искусства Курс лекций по физике Примеры решения задач
Расчет сварных соединений

Сопротивление материалов выполнение курсовой

Динамика точки и твердого тела: Основы динамики системы материальных точек. Поступательное движение твердого тела. Вращательное движение твердого тела. Вокруг постоянной оси. Момент инерции.Работа и мощность. Работа постоянной силы, силы тяжести. Работа постоянной силы во вращательном движении. Зависимость между вращающим моментом и числом оборотов.

Расчет статически неопределимых стержневых систем

Связи, накладываемые на систему. Степень статической неопределимости.

Для решения большинства статически неопределимых встречающихся на практике задач обозначенные приемы оказываются, однако, далеко не достаточными. Поэтому необходимо остановиться на более общих методах раскрытия статической неопределимости на примере стержневых систем.

Под стержневой системой в широком смысле слова понимается всякая конструкция, состоящая из элементов, имеющих форму бруса. Если элементы конструкции работают в основном на растяжение или сжатие, то стержневая система называется фермой (рис. 1).



Рис.1. Расчетная схема формы

Ферма состоит из прямых стержней, образующих треугольники. Для формы характерно приложение внешних сил в узлах.

Если элементы стержневой системы работают в основном на изгиб или кручение, то система называется рамой (рис. 2).

Особую, наиболее простую для исследования группу стержневых систем составляют плоские системы. У плоской рамы или фермы оси всех составляющих элементов до и после деформации расположены в одной плоскости. В этой же плоскости действуют все внешние силы, включая и реакции опор (см. рис. 2,а).

Наряду с плоскими рассматриваются так называемые плоско-пространственные системы. Для такого рода систем оси составляющих элементов в недеформированном состоянии располагаются, как и для плоских систем, в одной плоскости. Внешние же силовые факторы действуют в плоскостях, перпендикулярных к этой плоскости (рис. 2,в). Стержневые системы, не относящиеся к двум указанным классам, называются пространственными (рис.2,в).

Рамы и фермы принято разделять на статически определимые и статически неопределимые. Под статически определимой понимается такая кинематически неизменяемая система, для которой все реакции опор могут быть определены при помощи уравнений равновесия, а затем при найденных опорных реакциях методом сечений могут быть найдены также и внутренние силовые факторы в любом поперечном сечении. Под статически неопределимой системой имеется в виду такая, опять же кинематически неизменяемая система, для которой определение внешних реакций и внутренних силовых факторов не может быть произведено при помощи метода сечений и уравнений равновесия.



а) плоская, б) плоскопространственная. в) пространственная

Рис.2. Расчетные схемы рамных конструкций:

Разность между числом неизвестных (реакций опор и внутренних силовых факторов) и числом независимых уравнений статики, которые могут быть составлены для рассматриваемой системы, носит название степени или числа статической неопределимости. В зависимости от этого числа системы разделяются на один, два, три...., n раз статически неопределимые. Иногда говорят, что степень статической неопределимости равна числу дополнительных связей, наложенных на систему. Остановимся на этом вопросе подробнее. Динамика

Динамика – раздел механики, в котором изучаются законы движения материальных тел под действием сил. Осн.законы механики (зак-ны Галилея-Нютона): закон инерции (1-ый закон): материальная точка сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока действие других тел не изменит это состояние; основной закон динамики ( 2-ой закон (Ньютона)): ускорение матер.точки пропорционально приложенной к ней силе и имеет одинаковое с ней направление ; закон равенства действия и противодействия (3-й закон (Ньютона)): всякому действию соответствует равное и противоположно направленное противодействие; закон независимости сил: несколько одновременно действующих на матер.точку сил сообщают точке такое ускорение, какое сообщила бы ей одна сила, равная их геометрической сумме. В классической механике масса движущегося тела принимается равной массе покоящегося тела, – мера инертности тела и его гравитационных свойств. Масса = весу тела, деленному на ускорение свободного падения.

m=G/g, g»9,81м/с2. g зависит от географической широты места и высоты над уровнем моря – не постоянная величина. Сила – 1Н (Ньютон) = 1кг×м/с2. Система отсчета, в которой проявляются 1-ый и 2-ой законы, назыв. инерциальной системой отсчета. Дифференциальные уравнения движения материальной точки: , в проекции на декартовы оси коорд.: , на оси естественного трехгранника: mat=åFit;  man=åFin; mab=åFib (ab=0 – проекция ускорения на бинормаль), т.е.  (r – радиус кривизны траектории в текущей точке). Вслучае плоского движения точки в полярных координатах: . Две основные задачи динамики: первая задача динамики – зная закон движения точки, определить действующую на нее силу; вторая задача динамики (основная) – зная действующие на точку силы, определить закон движения точки.  – дифференциальное ур-ие прямолинейного движения точки. Дважды интегрируя его, находим общее решение x=f(t,C1,C2).

Положение жесткого бруса в пространстве определяется шестью независимыми координатами, иначе говоря, жесткий брус обладает шестью степенями свободы.

В раме рис. 4, а и б также имеются внутренние дополнительные связи. Контур рамы полностью замкнут.

Метод сил. Наиболее широко применяемым в машиностроении общим методом раскрытия статической неопределимости стержневых и рамных систем является метод сил.

Основная система, к которой приложены все внешние заданные силы и неизвестные силовые факторы, носит название эквивалентной системы.

Аналогичным образом запишем и остальные пять уравнений: каждое из слагаемых , входящих в уравнение, обозначает перемещение в направлении силы с первым индексом под действием силы, стоящей во втором индексе.

Обратимся к интегралам Мора. Для того чтобы определить величину , следует вместо внешних сил рассматривать единичную силу, заменяющую k-й фактор.

Определяем коэффициенты уравнений, считая, что жесткость на изгиб всех участков рамы постоянна и равна EJ.

Динамика относительного движения точки. Уравнения динамики материальной точки в неинерциальной системе отсчёта. Переносная и кориолисова силы инерции. Принцип относительности Галилея.
Вычисление потенциальной энергии