ВВЭР-1000 История разработки и сооружения
Сопротивление материалов выполнение курсовой Инженерная графика выполнение сборочного чертежа История искусства Курс лекций по физике Примеры решения задач
Расчет сварных соединений

Сопротивление материалов выполнение курсовой

Растяжение и сжатие: Упругость. Пластичность. Прочность. Расчёты прочностной надёжности элементов конструкций. Понятие о статической неопределимости систем. Сдвиг и кручение: Расчеты на прочность. Расчет на прочность заклепочных, сварных и резьбовых соединений при сдвиге; деформации при кручении, расчет на прочность при кручении.

Расчет быстровращающегося диска

Значительный интерес представляет задача о напряжениях и деформациях в быстро вращающихся валах и дисках. Высокие скорости вращения валов паровых турбин обусловливают появление в валах и дисках значительных центробежных усилий. Вызванные ими напряжения распределяются симметрично относительно оси вращения диска.

Рассмотрим наиболее простую задачу о расчете диска постоянной толщины. Расчет такого диска положен в основу некоторых приближенных способов расчета дисков любого профиля. Воспользуемся некоторыми результатами, полученными при выводе формул для расчета толстостенных цилиндров. Предположим, что по толщине диска, принимаемой равной единице, напряжения и не меняются; осевое напряжение будем считать равным нулю.

Составим условия равновесия элемента АВ, выделенного из диска двумя меридиональными сечениями и двумя концентрическими цилиндрическими поверхностями (фиг. 586). В данном случае, кроме сил, действующих по граням элемента АВ, необходимо принять во внимание также и силу инерции [an error occurred while processing this directive]



Рис.1. Расчетная схема вращающегося диска.

направленную вдоль радиуса от центра к внешнему контуру диска. Вместо ранее полученного уравнения равновесия получим:

(1)

Уравнение условий совместности деформаций также остаются в силе и для данной задачи, т. е.

(1)

Подставляя в это уравнение значение разности из (35.4), находим:

(2)

Дифференцируя уравнение (1) по r и подставляя в него вместо его значение из формулы (2), получаем линейное дифференциальное уравнение

или

Интегрируя это уравнение, находим:

(4)

Из (1) и (4) следует, что

(5)

В формулах (4) и (5) А и В — постоянные интегрирования, которые должны быть определены из условий на контуре диска. При определении постоянных рассмотрим два случая: 1) диск с отверстием в центре и 2) сплошной диск. При этом вначале предположим, что края диска свободны от внешних усилий. Количество движения системы Q (иногда обозначают К) – вектор, равный геометрической сумме (главному вектору) количеств движения всех точек системы:

,  М – масса всей системы, vC – скорость центра масс.

Теорема об изменении количества движения системы:  – производная по времени от количества движения механической системы геометрически равна главному вектору внешних сил, действующих на эту систему. В проекциях: , и т.д. Теорема об изменении кол-ва движения системы в интегральной форме:

, где  – импульсы внешних сил.

 

 В проекциях: Q1x – Q0x = åSekx и т.д. количество движения системы за некоторый промежуток времени равно сумме импульсов действующих на систему внешних сил за тот же промежуток времени.

Для диска с центральным отверстием напряжение должно быть равно нулю как при, так и при (рис.1).

Диск равного сопротивления. Получено, что, изменение напряжений и вдоль радиуса диска постоянной толщины весьма значительно.

Явление потери устойчивости при сжатии можно по аналогии иллюстрировать следующим примером из механики твердого тела (рис.2).

Рассмотрим прямой стержень постоянного сечения, шарнирно опертый по концам; одна из опор допускает возможность продольного перемещения соответствующего конца стержня (рис.3).

Анализ формулы Эйлера Значениям критической силы высших порядков соответствуют искривления по синусоидам с двумя, тремя и т. д. полуволнами (Рис.1):

Величина постоянной интегрирования а осталась неопределенной; физическое значение ее выяснится, если в уравнении синусоиды положить ; тогда (т. е. посредине длины стержня) получит значение:.

Понятие о первых интегралах уравнений движения системы материальных точек. Количество движения системы материальных точек. Количество движения твёрдого тела. Теорема об изменении количества движения системы в дифференциальной и интегральной формах. Случаи сохранения количества движения системы материальных точек; интегралы количества движения.
Вычисление потенциальной энергии