Сопротивление материалов выполнение курсовой Инженерная графика выполнение сборочного чертежа История искусства Курс лекций по физике Примеры решения задач
Эпюры внутренних усилий при растяжении-сжатии и кручении

Сопротивление материалов выполнение курсовой

Основы механики абсолютно-твердого тела. Основные понятия и положения статики. Плоская система сходящихся сил Параллельные силы. Пара сил. Напряженно-деформированное состояние элементарного объема материала.

Мысленное разрезание бруса на две части произвольным сечением А (рис.1 a), приводит к условиям равновесия каждой из двух отсеченных частей (рис.1 б,в). Здесь {S’} и {S"}- внутренние усилия, возникающих соответственно в левой и правой отсеченных частях вследствие действия внешних усилий.

При составлении мысленно отсеченных частей, условие равновесия тела обеспечивается соотношением:

Так как исходная система внешних сил (1) эквивалентна нулю, получаем:

{S’} = – {S”} (3)

Это условие соответствует четвертой аксиоме статики о равенстве сил действия и противодействия.

Используя общую методологию теоремы Пуансо о приведении произвольной системы сил к заданному центру и выбрав за полюс приведения центр масс, сечения А', точку С', систему внутренних усилий для левой части {S’} сводим к главному вектору и главному моменту внутренних усилий. Аналогично делается для правой отсеченной части, где положение центра масс сечения А”; определяется, соответственно, точкой С" (рис.1 б,в).

{S’} ~ {R’,L’0}; {S"} ~ { R”,L”0},(4)

Здесь в соответствие с четвертой аксиомой статики по-прежнему имеют место следующие соотношения:

R’ = – R”(5)

L’0 = – L”0

Таким образом главный вектор и главный момент системы внутренних усилий, возникающие в левой, условно отсеченной части бруса, равны по величине и противоположны по направлению главному вектору и главному моменту системы внутренних усилий, возникающих в правой условно отсеченной части.

График (эпюра) распределения численных значений главного вектора и главного момента вдоль продольной оси бруса и предопределяют, прежде всего, конкретные вопросы прочности, жесткости и надежности конструкций.

Определим механизм формирования компонент внутренних усилий, которые характеризуют простые виды сопротивлений: растяжение-сжатие, сдвиг, кручение и изгиб.

В центрах масс исследуемых сечений С' или С" зададимся соответственно левой (с', х', у', z') или правой (с", х", у", z”) системами координатных осей (рис.1 б, в), которые в отличие от базовой системы координат x, у, z будем называть "следящими". Термин обусловлен их функциональным назначением. А именно: отслеживание изменения положения сечения А (рис.1 а) при условном смещении его вдоль продольной оси бруса, например при: 0 х’1 а, а x’2 b и т.д., где а и b — линейные размеры границ исследуемых участков бруса.

Зададимся положительными направлениями проекций главного вектора или и главного момента или на координатные оси следящей системы (рис.1 б, в):

{N’, Q’y, Q’z} {M’x, M’y, M’z} (6)

{N”, Q”y, Q”z} {M”x, M”y, M”z}

При этом положительные направления проекций главного вектора и главного момента внутренних усилий на оси следящей системы координат соответствуют правилам статики в теоретической механике: для силы — вдоль положительного направления оси, для момента — против вращения часовой стрелки при наблюдении со стороны конца оси. Они классифицируются следующим образом:

Nx — нормальная сила, признак центрального растяжения или сжатия;

Мx — внутренний крутящий момент, возникает при кручении;

Qz, Qу — поперечные или перерезывающие силы – признак сдвиговых деформаций,

Му, Мz — внутренние изгибающие моменты, соответствуют изгибу.

Система сходящихся сил.

Способы нахождения равнодействующей системы

сходящихся сил

Система сил, линии действия которых пересекаются в одной точ­ке, называется системой сходящихся сил.

Система сходящихся сил либо приводится к равнодействующей, либо находится в равновесии.

Теорема. Равнодействующая системы сходящихся сил равна век­торной сумме этих сил.

Действительно, пусть к абсолютно твердому телу приложена система сил F1, F2, ..., Fn, линии действия которых пересекаются в некоторой точке О (рис. 9). Мы могли бы складывать последова­тельно эти силы по аксиоме о параллелограмме сил. Однако этот путь очень длинен. Пользуясь правилом геометрического сложения векторов, сразу построим многоугольник сил F1, F2, ...,Fn, замыкающая сторона которого и будет равнодействующей силой R.

Изложенный способ определения равнодействующей является геометрическим. Однако равнодействующую силу R можно определить и аналитически, по проекциям на неподвижные оси декартовой системы координат, выбрав за начало координат точку О пересечения линий действия системы сходящихся сил.

Кинематика, как специальный раздел теоретической механики, возникла позднее статики и динамики, а именно, в начале второй половины XIX в. Появление первых исследований по кинематике связано с изобретением огнестрельного оружия. В первую очередь внимание исследователей привлекали вопросы определения траектории полета снаряда, уточнение понятий о неравномерном и криволинейном движении точки. Леонардо да Винчи (1452—1519) первый экспериментально изучал вопрос о свободном вертикальном падении тяжелого тела. Однако лишь благодаря трудам Г. Галилея (1564—1642) развитие механики тесно связывается с запросами техники того времени.
Понятие о напряженияхи деформациях