Техническая механика. Примеры выполнения заданий

Задача №4.

К решению этих задач следует приступать после изучения темы «Центр тяжести» и разбора примера. С целью упрощения решения следует стремиться разбить заданную сложную плоскую фигуру на возможно меньшее число простых частей, применяя в случае необходимости «метод отрицательных площадей».

Последовательность решения задачи:

1. изобразить на рисунке пластину и показать все ее размеры;

2. если не указаны заранее, указать на чертеже координатные оси;

3. разбить фигуру на возможно меньшее число простых фигур (треугольник, квадрат, круг, сегмент и т.д.);

4. вычислить площадь каждой части – простой фигуры, учитывая «метод отрицательных площадей» (если простая фигура вырезана из основной, то ее площадь считается отрицательной);

5. находим центр тяжести выделенных простых фигур по стандартным формулам (если имеется ось симметрии, то центр тяжести лежит на этой оси);

6. вычисляем координаты XC и YC центра тяжести плоской пластины.

Пример 4.

Определить положение центра тяжести для тонкой однородной пластины, форма и размеры которой, в сантиметрах, показаны на рисунке 8.

Решение.

Данную фигуру представляем состоящей из трех простых фигур: 1 – прямоугольник, 2 – круга, 3 – треугольника.

Площади кругового и треугольного отверстий вводим в расчет со знаком минус, а площадь прямоугольника – без учета имеющихся в нем отверстий.

Площади простых фигур:

, где совпадающая с осью симметрии высота треугольника

Фигура имеет ось симметрии, следовательно, е центр тяжести лежит на этой оси. Совмещаем координатную ось х с осью симметрии, а начало координат – с левым краем фигуры (чтобы координаты центров тяжести оказались положительными).

Координаты центра тяжести простых фигур: , х2=8см, х3=31-6-12/3=21см, где 12/3 – расстояние от центра тяжести треугольника до его основания, равное 1/3 высоты.

Координата центра тяжести заданной фигуры

  Ответ: 16.7 см

Техническая механика. Примеры выполнения заданий