Сопротивление материалов выполнение курсовой Инженерная графика выполнение сборочного чертежа История искусства Курс лекций по физике Примеры решения задач

Типовые задачи курсового расчета по математике

Локальный экстремум ФНП

ПРИМЕР. Исследовать на локальный экстремум .

Решение. Применяя необходимые условия (сокращенно НУ), находим точки, "подозрительные" на экстремум:

НУ:   и .

Для применения достаточных условий (сокращенно ДУ) составляем  и рассматриваем его определенность в каждой
"подозрительной" на экстремум точке; имеем

 –

квадратичную форму относительно  и .
Курс лекций по математике Кривые второго порядка Решение дифференциальных уравнений

ДУ: ; матрица коэффициентов этой квадратичной формы имеет вид ; для нее , . Критерий Сильвестра не выполняется. Нужны дополнительные
исследования, их можно провести, например, следующим образом.

Пусть  – произвольная -окрестность () точки . Поскольку , то найдутся точки, принадлежащие этой окрестности, в которых  имеет значения различных знаков, например, в точке  , а в точке  имеем .

Итак, во всякой -окрестности точки  приращение функции не сохраняет знак. Это означает, что точка  не является точкой экстремума для рассматриваемой функции.

В точке   матрица коэффициентов квадратичной формы  имеет вид , для нее , . Согласно критерию Сильвестра  – положительно определенная квадратичная форма; по ДУ в точке  функция имеет локальный (безусловный) минимум, причем .

ЗАДАНИЕ для САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

1. .

2. Исследовать на локальный безусловный экстремум функцию , заданную неявно уравнением:

а) ; б) .

Ответы. 1. ; в точках , ,  требуются дополнительные исследования.

2. а) , , здесь
НУ: , значение  находим из самого

уравнения , т.е. , . Для применения достаточных условий существования экстремума следует найти дифференциал второго порядка функции  в каждой из точек  и ;

б) ,  – отрицательно определенная квадратичная форма относительно  и .


На главную