Сопротивление материалов выполнение курсовой Инженерная графика выполнение сборочного чертежа История искусства Курс лекций по физике Примеры решения задач

Типовые задачи курсового расчета по математике

Геометрические свойства интеграла ФНП

Площадь части криволинейной поверхности  считается с помощью поверхностного интеграла

(при  на ).

Например, если поверхность  задается уравнением ,  – проекция поверхности  на плоскость , то площадь поверхности  есть

.

Объем тела

Применение дифференциала к приближенным вычислениям. Дифференциал функции y = f(x) зависит от Dх и является главной частью приращения Dх.

а) Объем тела "с известной площадью сечения" считается с
помощью определенного интеграла.

б) Пусть в пространстве  задано тело, ограниченное плоскостью ,а именно плоской областью , цилиндрической поверхностью с образующей параллельной оси  и направляющей – границей  области  и поверхностью , заданной уравнением ;  – проекция поверхности  на плоскость ;  на .

Такое тело обычно называют цилиндрическим телом; объем его вычисляется с помощью двойного интеграла

.

Это согласуется с геометрическим представлением интегральной суммы   и ее пределом при  .

в) В случае, когда тело можно представить комбинированием цилиндрических тел, объем его считается через объемы этих цилиндрических тел. Для тела, ограниченного достаточно простыми
поверхностями, объем можно вычислять с помощью тройного интеграла

(  на ).

 Примеры: . Найти общее решение уравнения .

Решение: характеристическое уравнение k2 - 4 k + 4 = 0, (k - 2)2 = 0, его корни k1,2 = 2,

уоо = С1е2x + С2 хе2x . Степень многочлена m = 3, число  является корнем характеристического уравнения кратности r = 2, поэтому yчн(x) ищем в виде

yчн(x) = x2 e2x[Ax3 + Bx2 + Dx + E] = e2x (Ax5 + Bx4 + Dx3 + Ex2). Тогда

подстановка этих выражений в уравнение даст

После приведения подобных членов и сокращения на e2x сравниваем коэффициенты при одинаковых степенях x:

x3

x2

x

1

20A = 1;

 12B =0;

6D = -2;

2E = 0;

A = 1/20;

B = 0;

D = - 1/3;

E = 0.

 5. .

k2 - 5 k + 6 = 0, k1 = 2, k2 = 3, yoo = C1e 2x + C3e 3x. m = 3, число  является корнем характеристического уравнения кратности r = 1, поэтому yчн(x) ищем в виде 

yчн(x) = x1 e2x (Ax3 + Bx2 + Dx + E) = e2x (Ax4 + Bx3 + Dx2 + Ex). Дальнейшие выкладки проводятся также, как и в предыдущих примерах.

Иногда удобно использовать переход от переменных  и  к полярным координатам. В частности, условие  (одновременно и независимо друг от друга) преобразуется в условие  при всяком  (независимо от ; сразу для всех ).

Многие теоремы о пределах, рассмотренные подробно для функции одной переменной (сокр. ФОП), могут быть перефразированы и доказаны для ФНП. Это прежде всего теорема об единственности предела (конечного), теорема о локальной ограниченности функции, имеющей конечный предел при , теорема "об арифметике" функций, имеющих конечные пределы при  и т.д. Приемы вычисления предела ФОП также могут быть использованы для ФНП.

Показать, что функция   непрерывна в точке   по каждой координате  и , но не является непрерывной в точке  по совокупности переменных.

Пусть , , . Частные производные первого порядка функции  вводятся соответственно соотношениям

Записать уравнение касательной плоскости к поверхности  в точке .


На главную