Сопротивление материалов выполнение курсовой Инженерная графика выполнение сборочного чертежа История искусства Курс лекций по физике Примеры решения задач

Типовые задачи курсового расчета по математике

Вычисление интеграла ФНП.

Типовые задачи

1) Вычисление  проводится по формуле Ньютона – Лейбница, если известна какая-либо первообразная подынтегральной функции. Обобщения теорем сложения и умножения Появление только одного из независимых событий Рассмотрим примеры совместного применения теорем сложения и умножения. Пусть два независимых события А1 и А2 имеют вероятности появления соответственно p1 и р2. Найдем вероятность появления только одного из этих событий. Для этого введем новые события: В1 и B2. Событие В1 состоит в том, что событие А1 наступило, а событие А2 не наступило; иными словами, В1 = A1 2. Аналогичным образом определяется и событие B2 = 1A2 (совместное ненаступление события A1 и наступление события А2).

Если для вычисления первообразной применяется "интегрирование по частям", то эту операцию можно проводить сразу и для
определенного интеграла:

.

ПРИМЕР 1. Вычислить интеграл .

Решение.

.

Замена переменной интегрирования в определенном интеграле проводится соответственно следующей теореме.

Теорема (о замене переменной в определенном интеграле)

Пусть функция  определена и непрерывна на ;
функция ,  удовлетворяет условиям:

1)   ; причем , ;

2)   ;

3)   на , т.е. функция  обратима на  – существует обратная функция , :  на ;  на .

Тогда

,

где  – какая-либо первообразная для подынтегральной функции .

Заметим, что если  на  при выполнении остальных условий и , , то пределы интегрирования по  следует поменять местами.

Доказательство. Рассмотрим интеграл  –
интеграл с переменным верхним пределом – сложная функция от

,

т.е. действительно функция  – первообразная для , поэтому

.

Вычислить интеграл .

Вычисление площади плоской фигуры Площадь фигуры в декартовых координатах Вычислить площадь фигуры, ограниченной линиями  и .

Площадь плоской фигуры в полярных координатах


На главную